
P V - W A V E 7 . 5

SOLVEHELPING CUSTOMERS COMPLEX PROBLEMSSOLVE

O D B C C o n n e c t i o n U s e r ’ s G u i d e

Visual Numerics, Inc.

Visual Numerics, Inc. Visual Numerics, Inc. (France) S.A.R.L. Visual Numerics International, Ltd.
2500 Wilcrest Drive Tour Europe Suite 1
Suite 200 33 place des Corolles Centennial Court
Houston, Texas 77042-2579 Cedex 07 East Hampstead Road
United States of America 92049 PARIS LA DEFENSE Bracknell, Berkshire
713-784-3131 FRANCE RG 12 1 YQ
800-222-4675 +33-1-46-93-94-20 UNITED KINGDOM
(FAX) 713-781-9260 (FAX) +33-1-46-93-94-39 +01-344-458-700
http://www.vni.com e-mail: info@vni-paris.fr (FAX) +01-344-458-748
e-mail: info@boulder.vni.com e-mail: info@vniuk.co.uk

Visual Numerics, Inc. Visual Numerics International GmbH Visual Numerics Japan, Inc.
7/F, #510, Sect. 5 Zettachring 10 Gobancho Hikari Building, 4th Floor
Chung Hsiao E. Rd. D-70567 Stuttgart 14 Gobancho
Taipei, Taiwan 110 ROC GERMANY Chiyoda-Ku, Tokyo, 102
+886-2-727-2255 +49-711-13287-0 JAPAN
(FAX) +886-2-727-6798 (FAX) +49-711-13287-99 +81-3-5211-7760
e-mail: info@vni.com.tw e-mail: info@visual-numerics.de (FAX) +81-3-5211-7769

e-mail: vda-sprt@vnij.co.jp
VIsual Numerics S.A. de C.V. Visual Numerics, Inc., Korea
Cerrada de Berna 3, Tercer Piso Rm. 801, Hanshin Bldg.
Col. Juarez 136-1, Mapo-dong, Mapo-gu
Mexico, D.F. C.P. 06600 Seoul 121-050
Mexico Korea

© 1990-2001 by Visual Numerics, Inc. An unpublished work. All rights reserved. Printed in the USA.

Information contained in this documentation is subject to change without notice.

IMSL, PV- WAVE, Visual Numerics and PV-WAVE Advantage are either trademarks or registered trademarks of Visual Numerics, Inc.
in the United States and other countries.

The following are trademarks or registered trademarks of their respective owners: Microsoft, Windows, Windows 95, Windows NT, For-
tran PowerStation, Excel, Microsoft Access, FoxPro, Visual C, Visual C++ — Microsoft Corporation; Motif — The Open Systems Foun-
dation, Inc.; PostScript — Adobe Systems, Inc.; UNIX — X/Open Company, Limited; X Window System, X11 — Massachusetts
Institute of Technology; RISC System/6000 and IBM — International Business Machines Corporation; Java, Sun — Sun Microsystems,
Inc.; HPGL and PCL — Hewlett Packard Corporation; DEC, VAX, VMS, OpenVMS — Compaq Computer Corporation; Tektronix 4510
Rasterizer — Tektronix, Inc.; IRIX, TIFF — Silicon Graphics, Inc.; ORACLE — Oracle Corporation; SPARCstation — SPARC Interna-
tional, licensed exclusively to Sun Microsystems, Inc.; SYBASE — Sybase, Inc.; HyperHelp — Bristol Technology, Inc.; dBase — Bor-
land International, Inc.; MIFF — E.I. du Pont de Nemours and Company; JPEG — Independent JPEG Group; PNG — Aladdin
Enterprises; XWD — X Consortium. Other product names and companies mentioned herein may be the trademarks of their respective
owners.

IMPORTANT NOTICE: Use of this document is subject to the terms and conditions of a Visual Numerics Software License
Agreement, including, without limitation, the Limited Warranty and Limitation of Liability. If you do not accept the terms of the
license agreement, you may not use this documentation and should promptly return the product for a full refund. Do not make illegal
copies of this documentation. No part of this documentation may be stored in a retrieval system, reproduced or transmitted in any form
or by any means without the express written consent of Visual Numerics, unless expressly permitted by applicable law.

Table of Contents i

Table of Contents

Preface iii

Intended Audience iii

Conventions Used in this Manual iv

Technical Support v

FAX and E-mail Inquiries vi
Electronic Services vii

Chapter 1: Getting Started 1
Introduction 1

Starting PV-WAVE ODBC Connection 2

PV-WAVE:ODBC Connection Capabilities 2

Data Source Access is Convenient 2
Use the SQL Syntax You Already Know 2
Cursor Operations are Supported 2
Multiple ODBC Connections are Supported 3
Handling Data Inside PV-WAVE 3

Supported Data Source Drivers 3

Connecting to a Data Source 4

Making a Connection to the Data Source 4
Disconnecting from the Data Source 5
Querying the Data Source 5
Example 1: Importing an Entire Table 6
Example 2: Importing and Sorting Part of a Table 7
Example 3: Importing and Sorting Table Summary Data 8
Example 4: Importing Data from Multiple Tables 9
Example 5: Importing NULL Values 11

Controlling the Rowset Size 15

ii PV-WAVE:ODBC User’s Guide

Chapter 2: Reference 17
Summary of ODBC Connection Routines 17

NULL_PROCESSOR Function 19

ODBC_COMMIT Procedure 22

ODBC_CONNECT Function 23

ODBC_DISCONNECT Procedure 24

ODBC_EXIT Procedure 25

ODBC_FETCH Function 26

ODBC_INIT Function 28

ODBC_LEVEL Function 29

ODBC_META Function 30

ODBC_PREPARE Function 32

ODBC_ROLLBACK Procedure 33

ODBC_SQL Function 34

iii

PREFACE

Preface
This guide explains how to use the PV-WAVE:ODBC Connection version 2.0
functions. These functions let you query an ODBC compliant data source from
within PV-WAVE and import the query results into a PV-WAVE table. This
imported data can then be manipulated and displayed using other PV-WAVE func-
tions. This manual contains the following parts:

Chapter 1: Getting Started — Introduces PV-WAVE:ODBC Connection,
explains how to start the module, describes what you need to know to use the soft-
ware, and provides examples that demonstrate how to import data from a data
source into PV-WAVE.

Chapter 2: Reference — An alphabetically arranged reference describing each of
the data source connection functions.

Intended Audience
The PV-WAVE:ODBC Connection functions are easy to use if you are familiar
with the target data source (such as ORACLE) and Structured Query Language
(SQL). Because imported data is placed in a PV-WAVE table, you need to be famil-
iar with the PV-WAVE table functions. These functions include BUILD_TABLE,
QUERY_TABLE, and UNIQUE. They are described in the PV-WAVE Reference.

iv PV-WAVE:ODBC User’s Guide

Conventions Used in this Manual
You will find the following conventions used throughout this manual:

• Code examples appear in this typeface. For example:

PLOT, temp, s02, Title = ’Air Quality’

• Code comments are preceded by a semicolon and are shown in this typeface,
immediately below the commands they describe. For example:

PLOT, temp, s02, Title = ’Air Quality’

; This command plots air temperature data vs. sulphur dioxide
; concentration.

• Variables are shown in lowercase italics (myvar), function and procedure
names are shown in uppercase (XYOUTS), keywords are shown in mixed case
italic (XTitle), and system variables are shown in regular mixed case type (!Ver-
sion). For better readability, all GUI development routines are shown in mixed
case (WwMainMenu).

• A $ at the end of a line of PV-WAVE code indicates that the current statement
is continued on the following line. By convention, use of the continuation char-
acter ($) in this document reflects its syntactically correct use in PV-WAVE.
This means, for instance, that strings are never split onto two lines without the
addition of the string concatenation operator (+). For example, the following
lines would produce an error if entered literally in PV-WAVE.

WAVE> PLOT, x, y, Title = ’Average $
Air Temperatures by Two-Hour Periods’

; Note that the string is split onto two lines; an error message is
; displayed if you enter a string this way.

The correct way to enter these lines is:

WAVE> PLOT, x, y, Title = ’Average ’+ $
’Air Temperatures by Two-Hour Periods’

; This is the correct way to split a string onto two command
; lines.

• Reserved words, such as FOR, IF, CASE, are always shown in uppercase.

 v

Technical Support
If you have problems installing, unlocking, or running your software, contact
Visual Numerics Technical Support by calling:

Users outside the U.S., France, Germany, Japan, Korea, Mexico, Taiwan, and the
U.K. can contact their local agents.

Please be prepared to provide the following information when you call for consul-
tation during Visual Numerics business hours:

• Your license number, a six-digit number that can be found on the packing slip
accompanying this order. (If you are evaluating the software, just mention that
you are from an evaluation site.)

• The name and version number of the product. For example, PV-WAVE 7.0.

• The type of system on which the software is being run. For example, SPARC-
station, IBM RS/6000, HP 9000 Series 700.

• The operating system and version number. For example, HP-UX 10.2 or IRIX
6.5.

• A detailed description of the problem.

Office Location Phone Number

Corporate Headquarters
Houston, Texas 713-784-3131

Boulder, Colorado 303-939-8920

France +33-1-46-93-94-20

Germany +49-711-13287-0

Japan +81-3-5211-7760

Korea +82-2-3273-2633

Mexico +52-5-514-9730

Taiwan +886-2-727-2255

United Kingdom +44-1-344-458-700

vi PV-WAVE:ODBC User’s Guide

FAX and E-mail Inquiries

Contact Visual Numerics Technical Support staff by sending a FAX to:

or by sending E-mail to:

Office Location FAX Number

Corporate Headquarters 713-781-9260

Boulder, Colorado 303-245-5301

France +33-1-46-93-94-39

Germany +49-711-13287-99

Japan +81-3-5211-7769

Korea +82-2-3273-2634

Mexico +52-5-514-4873

Taiwan +886-2-727-6798

United Kingdom +44-1-344-458-748

Office Location E-mail Address

Boulder, Colorado support@boulder.vni.com

France support@vni-paris.fr

Germany support@visual-numerics.de

Japan vda-sprt@vnij.co.jp

Korea support@vni.co.kr

Taiwan support@vni.com.tw

United Kingdom support@vniuk.co.uk

 vii

Electronic Services

Service Address

General e-mail info@boulder.vni.com

Support e-mail support@boulder.vni.com

World Wide Web http://www.vni.com

Anonymous FTP ftp.boulder.vni.com

FTP Using URL ftp://ftp.boulder.vni.com/VNI/

PV-WAVE
Mailing List: Majordomo@boulder.vni.com

To subscribe
 include:

subscribe pv-wave YourEmailAddress

To post messages pv-wave@boulder.vni.com

viii PV-WAVE:ODBC User’s Guide

1

CHAPTER

1

Getting Started
This chapter introduces PV-WAVE:ODBC Connection, explains how to start the
module, describes what you need to know to use the software, and provides exam-
ples that demonstrate how to import data from a data source into PV-WAVE.

Introduction
PV-WAVE:ODBC Connection functions let you import data from ODBC compli-
ant data sources into PV-WAVE. Once the data is imported, you can use
PV-WAVE to analyze, manipulate, and visualize the data.

This chapter presents examples showing the following PV-WAVE:ODBC Connec-
tion routines.

• ODBC_COMMIT — Saves changes for an ODBC transaction.

• ODBC_CONNECT — Connect to an ODBC compliant data source.

• ODBC_DISCONNECT — Disconnect from an ODBC compliant data
source.

• ODBC_EXIT — Exit an ODBC connection session.

• ODBC_FETCH — Initiates a fetch (cursor) operation.

• ODBC_INIT — Initiate an ODBC session.

• ODBC_PREPARE — Setup a cursor and prepare for fetch operations.

• ODBC_ROLLBACK — Cancels changes for an ODBC transaction.

• ODBC_SQL — Initiate an SQL command.

2 Chapter 1: Getting Started PV-WAVE:ODBC User’s Guide

Starting PV-WAVE ODBC Connection
At the PV-WAVE command line, type:

@odbc_startup

This command initializes PV-WAVE:ODBC Connection.

PV-WAVE:ODBC Connection Capabilities

Data Source Access is Convenient

If you can access your data source from the computer on which PV-WAVE is run-
ning, you can connect to the data source from within PV-WAVE. This eliminates
the need to export the data to a file before importing it into PV-WAVE.

Use the SQL Syntax You Already Know

You can query or update your data source from PV-WAVE using the same Struc-
tured Query Language (SQL) commands supported by your local DBMS. You do
not need to learn new syntax or complicated function and procedure calls.

For database queries, PV-WAVE:ODBC Connection retrieves all of the rows and
columns specified by the SQL statement. The results of the query are placed in a
PV-WAVE table variable, in which each row of the query is a row in an array of
type structure.

For other types of SQL statements, PV-WAVE:ODBC Connection sends the
command directly to the data source. These commands can be used to insert,
update, or delete data in the data source.

Cursor Operations are Supported

If your data source and ODBC driver are Level 2 compliant, you can perform read-
only cursor operations on data source objects. Cursor operations allow you to
retrieve part of the rows generated by a query. One application of this feature is that
you can retrieve the data from a single query incrementally, processing each subset
before requesting the next one. Refer to the PV-WAVE:ODBC Connection func-
tions ODBC_PREPARE and ODBC_FETCH for more information.

Supported Data Source Drivers 3

Multiple ODBC Connections are Supported

You can connect to multiple ODBC drivers and/or data sources in the same
PV-WAVE session, even when the data sources are administered by the same
DBMS. In addition, if a particular ODBC driver and data source support multiple
connections to the same data source, you can maintain multiple connections to the
same data source in the same PV-WAVE session.

Handling Data Inside PV-WAVE

PV-WAVE:ODBC Connection imports query data into a PV-WAVE table variable.
This format is very convenient for using other PV-WAVE procedures and functions
to analyze and display the data from the query. Almost all PV-WAVE functions can
access the data directly from the table. In addition, PV-WAVE has some proce-
dures and functions that are specially designed to work with table variables. For
more information, refer to the PV-WAVE functions BUILD_TABLE,
QUERY_TABLE, UNIQUE, GROUP_BY, and ORDER_BY.

Supported Data Source Drivers
PV-WAVE:ODBC Connection lets you connect to many popular data source driv-
ers, including:

• dBase

• Microsoft Access

• Excel

• FoxPro

• Paradox

• Text (comma separated values)

• Oracle

• Microsoft SQL Server

NOTE PV-WAVE:ODBC Connection can connect to any Level 1 compliant
ODBC driver, although you may have to test for the actual level of functionality
available based on their compliance with the ODBC standard. Fetch (cursor) oper-
ations require Level 2 compliance. Use the ODBC_LEVEL function to test for
compliance level.

4 Chapter 1: Getting Started PV-WAVE:ODBC User’s Guide

Connecting to a Data Source
The functions ODBC_INIT and ODBC_CONNECT are used to establish a con-
nection to your data source from PV-WAVE. ODBC_INIT returns an ODBC
environment handle, which is then used as an input argument for
ODBC_CONNECT. ODBC_CONNECT returns an ODBC connection handle,
which is used to identify the connection for other data source operations. The syn-
tax is as follows:

env_handle = ODBC_INIT()

connect_handle = ODBC_CONNECT(env_handle, "data_source_name"
[, "login_string"])

The value of data_source_name must be the same as the name specified for your
data source on the DSN tab of the ODBC Administrator application. If login_string
is specified, it must contain the username and password information required for
the data source. The format of this string is dependent upon the DBMS used to
administer the data source. If login_string is not specified, then PV-WAVE:ODBC
Connection uses the default values specified in ODBC Administrator.

Making a Connection to the Data Source

Assume that you would like to import some data from an Oracle data source into
PV-WAVE.

First, you must load the PV-WAVE:ODBC Connection routines into your
PV-WAVE session by executing the ODBC_STARTUP command file:

@ODBC_STARTUP

% ODBC_INITIALIZE: PV-WAVE:ODBC Interface is initialized

Next, create an environment handle and make the connection. Let’s assume the
data source name is specified as “my_oracle_DSN” in ODBC Administrator, and
that you wish to log in as user “scott”, with password “tiger”:

henv = ODBC_INIT()

hcon = ODBC_CONNECT(henv, ”my_oracle_DSN”, ”scott/tiger”)

You are now ready to import the data, using either ODBC_SQL, or
ODBC_PREPARE and ODBC_FETCH. For more information, please refer to the
PV-WAVE:ODBC Connection documentation on the ODBC_INIT and
ODBC_CONNECT functions.

Connecting to a Data Source 5

NOTE The ODBC driver must be installed and the data source name created in
ODBC Administrator before you can access the data source from PV-WAVE. If
you have problems connecting to your data source, please contact your database
administrator to confirm that ODBC has been installed and configured correctly for
your data source.

Disconnecting from the Data Source

Use the ODBC_DISCONNECT procedure to disconnect from the data source
when you have finished interacting with it. This step can be very important if there
are a limited number of license seats for connecting to the data source. Disconnect-
ing from the data source frees a license seat so that another user can connect to the
data source. If there is only one license seat available for the data source, and you
wish to establish a connection to the same data source as a different user, you must
end the first connection.

ODBC_DISCONNECT takes one parameter, the connect_handle that was
returned by ODBC_CONNECT. The syntax is:

ODBC_DISCONNECT, connect_handle

For example, if you connected to the data source with the following
ODBC_CONNECT call:

hcon = ODBC_CONNECT(henv, ”my_oracle_DSN”, ”scott/tiger”)

you can end the connection with the following ODBC_DISCONNECT call:

ODBC_DISCONNECT, hcon

This call frees the data source connection license seat for another user. For more
information, please refer to the description of the ODBC_DISCONNECT
procedure.

Querying the Data Source

After a connection to a data source has been established, you can use ODBC_SQL
to issue any single-line SQL command to the DMBS. ODBC_SQL takes two
parameters: the connection handle (returned by ODBC_CONNECT) and a string
containing the SQL command. The syntax is:

result = ODBC_SQL(connect_handle, “sql_command”)

The parameter sql_command is a string containing an SQL command to execute on
the data source. If sql_command returns a result set (as in a SELECT statement),

6 Chapter 1: Getting Started PV-WAVE:ODBC User’s Guide

result contains the result set placed in a PV-WAVE table variable. In the cases
where sql_command does not return a result set (as in INSERT, UPDATE, or
DELETE statements), result contains a long value that indicates the success
(result=0) or failure (result=–1) status of sql_command. Once result contains a
result set, result can be manipulated and/or displayed by any PV-WAVE routine.
For instance, you can create PV-WAVE tables that are subsets of the result set
(using QUERY_TABLE, for example).

NOTE PV-WAVE single-line SQL command support does not include the ability
to execute Block SQL statements. Execution of stored procedures, however, is sup-
ported, so we recommend that users who wish to perform more complicated
DBMS operations from PV-WAVE enclose them in a DBMS stored procedure. For
more info on creating stored procedures, contact your database administrator.

Example 1: Importing an Entire Table

The ODBC_SQL command shown below imports all of the data from the table
called wave.wave_prop_trx in an Oracle data source with the DSN
mydbserv. The table contains 8 columns and 10000 rows.

henv = ODBC_INIT()

hcon = ODBC_CONNECT(henv, ”mydbserv”, ”scott/tiger”)

 ; Connect to the Oracle data source identified by DSN ’mydbserv’,
 ; with username ’scott’ and password ’tiger’

table = ODBC_SQL(hcon, ”SELECT * FROM wave.wave_prop_trx”)

INFO, table

TABLE STRUCT = -> TABLE_1052092784746223633327159
Array(10000)

INFO, table, /Structure

** Structure TABLE_1052092784746223633327159, 8 tags, 72 length:

 TRX_ID LONG 0

 PROP_TYPE STRING ’OTHER’

 PROP_ADDRESS STRING ’’

 PROP_POST_CD STRING ’’

 PROP_XGRID DOUBLE 0.0075200000

Connecting to a Data Source 7

 PROP_YGRID DOUBLE 1.6357100

 TRX_AMT DOUBLE 116383.00

 TRX_DATE STRUCT -> !DT Array(1)

As you can see, the data has been imported into an array of PV-WAVE structures.
The tag names in the structures correspond to the column names in the database
table.

Example 2: Importing and Sorting Part of a Table

In this example, we wish to import and sort a subset of the data in
wave.wave_prop_trx. The following set of commands limits both the num-
ber of rows and columns returned to PV-WAVE.

henv = ODBC_INIT()

hcon = ODBC_CONNECT(henv, ”mydbserv”, ”scott/tiger”)

 ; Create the SQL command in a string PV-WAVE variable.
 ; First add the column list to this variable.

sql_command = ”SELECT trx_id, prop_type, ” + $

 ”trx_amt, trx_date ” + $

 ”FROM wave.wave_prop_trx ”

 ; Next, add a WHERE clause to the string to limit the number of rows.
 ; The WHERE clause limits the subset to all dates between June 6, 1999
 ; and June 6, 2001

sql_command = sql_command + $

 ”WHERE trx_date <= TO_DATE(’2001/06/01’, ’YYYY/MM/DD’) ” + $

 ” AND trx_date > TO_DATE(’1999/06/01’, ’YYYY/MM/DD’) ”

 ; Finally, add an ORDER BY clause to the string to sort the dates in order.

sql_command = sql_command + ”ORDER BY trx_date”

sub_table = ODBC_SQL(hcon, sql_command)

INFO, sub_table

SUB_TABLE STRUCT = -> TABLE_5122903921219401793313087
Array(947)

8 Chapter 1: Getting Started PV-WAVE:ODBC User’s Guide

INFO, sub_table, /Structure

** Structure TABLE_5122903921219401793313087, 4 tags, 48 length:

 TRX_ID LONG 7514

 PROP_TYPE STRING ’OTHER’

 TRX_AMT DOUBLE 206871.00

 TRX_DATE STRUCT -> !DT Array(1)

DT_TO_STR, sub_table(0).trx_date, tmp_date, tmp_time, Date_Fmt=5,
Time_Fmt=-1

PRINT, tmp_date + ” ” + tmp_time

1999/06/01 22:20:37.000

TIP Very long SQL statements may not fit in a single PV-WAVE command string.
For very long SQL statements, we recommend that you “build” the command in a
PV-WAVE string variable, which can be any length.

Example 3: Importing and Sorting Table Summary Data

The ODBC_SQL command shown below imports averages by property type from
table wave.wave_prop_trx in the Oracle data source mydbserv.

henv = ODBC_INIT()

hcon = ODBC_CONNECT(henv, ”mydbserv”, ”scott/tiger”)

amt_by_type = ODBC_SQL(hcon, ”SELECT prop_type, ” + $

 ”AVG(trx_amt) my_avg_amt, ” + $

 ”SUM(trx_amt) my_total_amt ” + $

 ”FROM wave.wave_prop_trx ” + $

 ”GROUP by prop_type ” + $

 ”ORDER by prop_type”)

 ; Select the average transaction amount
 ; for each property type, ordered by property type

Connecting to a Data Source 9

INFO, amt_by_type

AMT_BY_TYPE STRUCT = -> TABLE_9471101896788241082259344
Array(9)

INFO, amt_by_type, /Structure

** Structure TABLE_9471101896788241082259344, 3 tags, 24 length:

 PROP_TYPE STRING ’1BR_CONDO’

 MY_AVG_AMT DOUBLE 80501.404

 MY_TOTAL_AMT DOUBLE 87666029.

NOTE When using expressions or aggregate functions in an SQL SELECT col-
umn list, we recommend that you use a column alias. This will help ensure that the
tag name is valid in the PV-WAVE table variable.

This same data could also be generated with PV-WAVE functions:

INFO, amt_by_type_2

AMT_BY_TYPE_2 STRUCT = -> TABLE_2033126909298595681151922
Array(9)

INFO, amt_by_type_2, /Structure

** Structure TABLE_2033126909298595681151922, 3 tags, 24 length:

 PROP_TYPE STRING ’1BR_CONDO’

 MY_AVG_AMT DOUBLE 80501.404

 MY_TOTAL_AMT DOUBLE 87666029.

TIP PV-WAVE supports some searching, sorting, and aggregate functions inter-
nally (with the WHERE and QUERY_TABLE functions, for example). In many
cases, the PV-WAVE searching and sorting algorithms may be faster than perform-
ing them on the DBMS server (with ODBC_SQL). We recommend that you try
importing data into PV-WAVE with a minimum of sorting, and use PV-WAVE
functions to sort, group, and search the data.

Example 4: Importing Data from Multiple Tables

This example combines data from three different tables into one PV-WAVE data
set. The data is from air quality measurements from a number of fixed-location
monitoring stations. One table contains the monitoring station location information

10 Chapter 1: Getting Started PV-WAVE:ODBC User’s Guide

(wave.wave_ts_location), one contains the dataset information
(wave.wave_ts_dataset), and one contains the individual measurement data
(wave.wave_ts_datapoint). Notice that the tag names in the PV-WAVE
table variable are the same as the column alias values given in the SELECT list.

TIP We suggest that you use explicit SELECT lists (no wildcards) and column
aliases when importing data through a multi-table join.

henv = ODBC_INIT()

hcon = ODBC_CONNECT(henv, ”mydbserv”, ”scott/tiger”)

 ; Create the SQL command as a PV-WAVE variable
 ; This query combines data from 3 normalized tables

sql_command = ”SELECT dpnt.air_temp air_temp, ” + $

 ”dpnt.humidity humidity, ” + $

 ”dpnt.atm_press atm_press, ” + $

 ”dpnt.o3_ppm o3_ppm, ” + $

 ”dpnt.co_ppm co_ppm, ” + $

 ”dpnt.no2_ppm no2_ppm, ” + $

 ”dpnt.pm10_ug_m3 pm10_ug_m3, ” + $

 ”dset.dataset_id dataset_id, ” + $

 ”dset.start_date ref_date, ” + $

 ”dloc.grid_x grid_x, ” + $

 ”dloc.grid_y grid_y ” + $

”FROM wave.wave_ts_datapoint dpnt, ” + $

 ”wave.wave_ts_dataset dset, ” + $

 ”wave.wave_ts_location dloc ”

 ; Join and data limits.
 ; Only plot data for grid ID = 1
 ; And for datasets which started during 1997 through 2002.

sql_command = sql_command + $

”WHERE dset.dataset_id = dpnt.dataset_id ” + $

 ”AND dset.start_date >= TO_DATE(’19970101’, ’YYYYMMDD’) ” + $

 ”AND dset.start_date < TO_DATE(’20030101’, ’YYYYMMDD’) ” + $

 ”AND dloc.loc_id = dpnt.loc_id ” + $

Connecting to a Data Source 11

 ”AND dloc.start_date <= dset.start_date ” + $

 ”AND (dloc.end_date > dset.start_date ” + $

 ” OR dloc.end_date IS NULL) ” + $

 ”AND dloc.grid_id = 1 ”

 ; Perform the query

table = ODBC_SQL(hcon, sql_command)

INFO, table

TABLE STRUCT = -> TABLE_1817650741549729007289092
Array(3400)

INFO, table, /Structure

** Structure TABLE_1817650741549729007289092, 11 tags, 72 length:

 AIR_TEMP FLOAT 29.2000

 HUMIDITY FLOAT 26.7000

 ATM_PRESS FLOAT 753.520

 O3_PPM FLOAT 0.0434300

 CO_PPM FLOAT 3.61000

 NO2_PPM FLOAT 0.0347400

 PM10_UG_M3 FLOAT 21.1800

 DATASET_ID LONG 6

 REF_DATE STRUCT -> !DT Array(1)

 GRID_X FLOAT -1.46000

 GRID_Y FLOAT 6.15000

NOTE PV-WAVE only supports table JOINs during data import. JOINs are not
allowed on PV-WAVE table data after import.

Example 5: Importing NULL Values

PV-WAVE does not support NULL values in table variables. If PV-WAVE encoun-
ters a NULL value in a DBMS result set, it will replace it with zero (for numeric
types), a NULL string (for strings), or an empty structure (for date/time values). In
the following example, we use the table wave.wave_conv_test_nulls,
which contains the following values:

12 Chapter 1: Getting Started PV-WAVE:ODBC User’s Guide

TEST_STRING TEST_DATE TEST_NUM

----------- --------- --------

<NULL> 04-JUL-1776 3.14

<NULL_STRING> <NULL> 0

Not null! 04-JUL-1776 <NULL>

In this table, <NULL> represents the database NULL value, and
<NULL_STRING> is the zero-length string (‘’). The following example indicates
how this table could cause problems in PV-WAVE:

henv = ODBC_INIT()

hcon = ODBC_CONNECT(henv, ”mydbserv”, ”scott/tiger”)

table = ODBC_SQL(hcon, ”SELECT * FROM wave.wave_conv_test_nulls”)

INFO, table

TABLE STRUCT = -> TABLE_2464312442611796883049150 Array(3)

INFO, table, /Structure

** Structure TABLE_2464312442611796883049150, 3 tags, 48 length:

 TEST_STRING STRING ’’

 TEST_DATE STRUCT -> !DT Array(1)

 TEST_NUM DOUBLE 3.1400000

INFO, table(1), /Structure

** Structure TABLE_2464312442611796883049150, 3 tags, 48 length:

 TEST_STRING STRING ’’

 TEST_DATE STRUCT -> !DT Array(1)

 TEST_NUM DOUBLE 0.00000000

INFO, table(2), /Structure

** Structure TABLE_2464312442611796883049150, 3 tags, 48 length:

 TEST_STRING STRING ’Not null!’

 TEST_DATE STRUCT -> !DT Array(1)

 TEST_NUM DOUBLE 0.00000000

Connecting to a Data Source 13

In row 0 and row 1, the column test_string has the same value in PV-WAVE.
However, in the database, the row 0 value is NULL and the row 1 value is the
NULL string ‘’. Similarly, the values of test_num are the same in rows 1 and 2,
even though they are different in the database.

If NULL-valued data is significant, one approach is to replace the NULL with a
substitute value in the SELECT list. The following example indicates how this can
be accomplished:

table_2 = ODBC_SQL(hcon, $

”SELECT NVL(test_string, ’_NULL_’) test_string, ” + $

”NVL(test_date, TO_DATE(’29991231’, ’YYYYMMDD’)) test_date, ” + $

”NVL(test_num, -999999.98) test_num ” + $

”FROM wave.wave_conv_test_nulls”)

INFO, table_2, /Structure

** Structure TABLE_2196927880451215918776427, 3 tags, 48 length:

 TEST_STRING STRING ’_NULL_’

 TEST_DATE STRUCT -> !DT Array(1)

 TEST_NUM DOUBLE 3.1400000

INFO, table_2(1), /Structure

** Structure TABLE_2196927880451215918776427, 3 tags, 48 length:

 TEST_STRING STRING ’’

 TEST_DATE STRUCT -> !DT Array(1)

 TEST_NUM DOUBLE 0.00000000

INFO, table_2(2), /Structure

** Structure TABLE_2196927880451215918776427, 3 tags, 48 length:

 TEST_STRING STRING ’Not null!’

 TEST_DATE STRUCT -> !DT Array(1)

 TEST_NUM DOUBLE -999999.98

Another approach is the concept of indicator variables. An indicator variable has
a value of –1 if the associated variable is NULL, and a value of zero otherwise. For
an Oracle database, the following example code can be used to generate indicator
variables in PV-WAVE:

14 Chapter 1: Getting Started PV-WAVE:ODBC User’s Guide

table_3 = ODBC_SQL(hcon, $

 ”SELECT test_string, ” + $

”DECODE(test_string, NULL, -1, 0) test_string_i, ” + $

 ”test_date, ” + $

”DECODE(test_date, NULL, -1, 0) test_date_i, ” + $

 ”test_num, ” + $

 ”DECODE(test_num, NULL, -1, 0) test_num_i ” + $

 ”FROM wave.wave_conv_test_nulls”)

INFO, table_3, /Structure

** Structure TABLE_1775756501227746018662168, 6 tags, 72 length:

 TEST_STRING STRING ’’

 TEST_STRING_I DOUBLE -1.0000000

 TEST_DATE STRUCT -> !DT Array(1)

 TEST_DATE_I DOUBLE 0.00000000

 TEST_NUM DOUBLE 3.1400000

 TEST_NUM_I DOUBLE 0.00000000

INFO, table_3(1), /Structure

** Structure TABLE_1775756501227746018662168, 6 tags, 72 length:

 TEST_STRING STRING ’’

 TEST_STRING_I DOUBLE 0.00000000

 TEST_DATE STRUCT -> !DT Array(1)

 TEST_DATE_I DOUBLE -1.0000000

 TEST_NUM DOUBLE 0.00000000

 TEST_NUM_I DOUBLE 0.00000000

INFO, table_3(2), /Structure

** Structure TABLE_1775756501227746018662168, 6 tags, 72 length:

 TEST_STRING STRING ’Not null!’

 TEST_STRING_I DOUBLE 0.00000000

 TEST_DATE STRUCT -> !DT Array(1)

 TEST_DATE_I DOUBLE 0.00000000

 TEST_NUM DOUBLE 0.00000000

 TEST_NUM_I DOUBLE -1.0000000

Controlling the Rowset Size 15

Once the indicator variables have been created, it is a simple matter to create indi-
ces (using the WHERE function) which can be used to isolate or exclude the NULL
values.

Controlling the Rowset Size
You can control the rowset size for database queries. The rowset size is defined as
the number of rows that the DBMS returns to the client per network transmission.

The ability to change the rowset size allows you to tune PV-WAVE:ODBC Con-
nection to optimize the performance of each query.

Small rowsets:

• reduce the amount of temporary memory needed to import a large dataset gen-
erated by a query.

• reduce the number of blocked processes on networks with heavy traffic.

• increase the time required to complete a query.

Large rowsets:

• reduce the time required to complete a query.

• increase the amount of temporary memory required.

• increase the number of blocked processes. .

To change the rowset size, modify the PV-WAVE system variable
!Odbc_Rowset_Size. For example:

!Odbc_Rowset_Size = 300

The default value of !Odbc_Rowset_Size is 500.

All PV-WAVE:ODBC Connection routines check this system variable before
accepting data from the DBMS. During the same connection, you can change the
rowset size between one query and another.

For queries sent through the functions ODBC_SQL and ODBC_META, changing
the rowset size does not affect the total number of rows returned, just the number
of network transactions which are required to return all of the rows produced by the
query. In the case of ODBC_PREPARE and ODBC_FETCH, the rowset size is the
default number of rows returned for each call to ODBC_FETCH. For more details
on how the value of !Odbc_Rowset_Size affects the results of ODBC_FETCH,
refer to the descriptions of ODBC_PREPARE and ODBC_FETCH in the next
chapter.

16 Chapter 1: Getting Started PV-WAVE:ODBC User’s Guide

17

CHAPTER

2

Reference

Summary of ODBC Connection Routines
The syntax for these routines is summarized below:

NULL_PROCESSOR Function

table =
NULL_PROCESSOR(null_info_object,[‘col1’,’col2’,…,’coln’],Comp=comp)

ODBC_COMMIT Procedure

ODBC_COMMIT, connect_handle
Saves changes for an ODBC transaction.

ODBC_CONNECT Function

connect_handle = ODBC_CONNECT(env_handle, dsn [, login])
Connect to an ODBC compliant data source.

ODBC_DISCONNECT Procedure

ODBC_DISCONNECT, connect_handle
Terminate an ODBC connection.

ODBC_EXIT Procedure

ODBC_EXIT, env_handle
Exit an ODBC session.

18 Chapter 2: Reference PV-WAVE:ODBC User’s Guide

ODBC_FETCH Function

table = ODBC_FETCH(statement_handle, option [, start_row])
Initiates a fetch operation.

ODBC_INIT Function

env_handle = ODBC_INIT()
Initiates an ODBC session.

ODBC_LEVEL Function

level = ODBC_LEVEL(connect_handle)
Tests for ODBC level compliance for specific drivers related to fetch operations only.

ODBC_META Function

table = ODBC_META(connect_handle, type, qualifier, owner, name)
Search for data source objects.

ODBC_PREPARE Function

statement_handle = ODBC_PREPARE(connect_handle, sql_command,
cursor_size)

Initiate an SQL command and prepare for fetch (cursor) operations.

ODBC_ROLLBACK Procedure

ODBC_ROLLBACK, connect_handle
Cancels changes for an ODBC transaction.

ODBC_SQL Function

table = ODBC_SQL(connect_handle, sql_stmt)
Initiate an SQL command.

NULL_PROCESSOR Function 19

NULL_PROCESSOR Function
Facilitates the use of the Null_Info keyword for the DB_SQL function by extract-
ing the list of rows containing missing for one or more columns.

Usage

table =
NULL_PROCESSOR(null_info_object,[‘col1’,’col2’,…,’coln’],Comp=comp)

Input Parameters

null_info_object — The object returned by the Null_Info keyword in the DB_SQL
call.

coli — The list of column names.

Keywords

Comp=comp — Produces the complement to the result, that is, the result contains
a list of rows with missing data. comp contains a list of rows with no missing data.

Discussion

Assuming the following use of the ODBC_SQL Null_Info keyword:

table=odbc_sql(odbc_connect('oracle', 'user_id/user_pw'), 'select *
from blanktest', null_info=foo)

where blanktest contains the data given below, which has missing data for
ID_NO in the 4th, 9th, and 11th rows and missing data for ANIMAL_NAME in the
3rd, 8th, and 10th rows.

20 Chapter 2: Reference PV-WAVE:ODBC User’s Guide

NOTE Note: NULL indicates a NULL value in the corresponding database field.

Then,

jjj=NULL_PROCESSOR(foo,['ID_NO','ANIMAL_NAME'],Comp=comp)

produces the results

jjj = 2 3 7 8 9 10

comp = 0 1 4 5 6

This output can be utilized as in the following examples.

Table2 = table(comp)

produces a table with only rows and no missing values or as in the table given
above.

ID_NO ANIMAL_ NAME

1 golden

2 chirpy

3 NULL

NULL harry

5 KC

6 skip

7 sparky

8 NULL

NULL sneakers

10 NULL

NULL harvey

ID_NO ANIMAL_ NAME

1 golden

2 chirpy

5 KC

6 skip

7 sparky

NULL_PROCESSOR Function 21

Then,

Table3=table(jjj)

produces a table containing only rows with missing data (note how zeros have been
substituted for values of ID_NO that are missing).

Instead, if you want only the locations where one field is missing, a different db_sql
call, jjj=foopro(foo,['ID_NO'],Comp=comp), returns an array, jjj, with the rows
where ID_NO is missing (3 8 10).

Remember that rows are counted beginning with 0.

ID_NO ANIMAL_ NAME

3

0 harry

8

0 sneakers

10

0 harvey

22 Chapter 2: Reference PV-WAVE:ODBC User’s Guide

ODBC_COMMIT Procedure
Saves changes for an ODBC transaction.

Usage

ODBC_COMMIT, connect_handle

Input Parameters

connect_handle — A connection handle established with ODBC_CONNECT.

Keywords

Env_handle -- If set, this keyword indicates that the input parameter is an environ-
ment handle (established with ODBC_INIT). In this case, all transactions on all
connections associated with this environment handle are affected.

Discussion

ODBC transactions such as UPDATE, INSERT, and DELETE can cause changes
in the data on the server. Often, a user will want to review these changes and decide
whether to save or cancel them. ODBC_COMMIT saves all changes which are
pending on the current connection. To cancel the changes, use the
ODBC_ROLLBACK procedure.

Currently, the ODBC Connection does not support savepoints or nested
transactions.

NOTE Certain DBMS may allow COMMITs to occur through the ODBC_SQL
command, but these are not recommended in ODBC. For best results, please use
ODBC_COMMIT and ODBC_ROLLBACK.

Example
ODBC_COMMIT, connect_handle

See Also

ODBC_ROLLBACK

ODBC_CONNECT Function 23

ODBC_CONNECT Function
Connect to an ODBC compliant data source.

Usage

connect_handle = ODBC_CONNECT(env_handle, dsn [, login])

Input Parameters

env_handle — An ODBC environment handle, as returned by ODBC_INIT.

dsn — String identifying a data source name (DSN).

login — A user name/password string if needed for given DSN.

Returned Value

connect_handle — An ODBC connection handle, used to identify this data source
connection in other function calls. If the function fails, –1 is returned.

Discussion

A DSN (data source name) is a logical entity defining a data source under ODBC.
The end user creates DSNs via the ODBC Administrator.

These entities are machine-specific rather than user specific. System DSN
attributes vary from driver to driver but contain, at minimum, entries identifying the
physical location of the data, the ODBC driver associated with that data, a descrip-
tion field, and a name field.

It is the name field that will be passed to ODBC_CONNECT. If that driver for the
system DSN supports login strings, the login parameter will be used to establish
the connection, overriding the default login string if established for that DSN.

Multiple connections may be open at one time. Multiple connections to the same
DSN may be established if supported by the driver.

Example 1

This example shows the default connection, where the DSN is ORACLE.

oracle_id = ODBC_CONNECT(env_handle, ’ORACLE’)

24 Chapter 2: Reference PV-WAVE:ODBC User’s Guide

Example 2

This example shows the default connection, where the DSN is ORACLE, and the
username and password are given in the login string.

oracle_id = ODBC_CONNECT(env_handle, ’ORACLE’,’scott/tiger’)

See Also

ODBC_SQL, ODBC_DISCONNECT, ODBC_INIT

ODBC_DISCONNECT Procedure
Disconnect from an ODBC.

Usage

ODBC_DISCONNECT, connect_handle

Input Parameters

connect_handle — The connection handle to be freed. The connection handle is
the value returned by ODBC_CONNECT.

Discussion

Use this procedure to disconnect from the data source when:

• You are finished importing data from a data source and want to end the session
and free the DBMS license seat.

• You want to access the same data source, but using a different login string and
the driver doesn’t support multiple connections to the same DSN.

Example

In this example, the ODBC_DISCONNECT procedure is used to disconnect from
the ORACLE database.

env_handle=ODBC_INIT()

oracle_id = ODBC_CONNECT(env_handle, ’ORACLE’,’scott/tiger’)

emp = ODBC_SQL(oracle_id, ’SELECT * from emp’)

ODBC_EXIT Procedure 25

ODBC_DISCONNECT, oracle_id

INFO, /Structure, emp

See Also

ODBC_SQL, ODBC_CONNECT

ODBC_EXIT Procedure
Exit the PV-WAVE:ODBC Connection environment established by ODBC_INIT.

Usage

ODBC_EXIT, env_handle

Input Parameters

env_handle — The environment handle returned from ODBC_INIT.

Discussion

The ODBC_EXIT call is necessary to free the ODBC environment set up by the
ODBC_INIT call.

Example
ODBC_EXIT, env_handle

See Also

ODBC_INIT

26 Chapter 2: Reference PV-WAVE:ODBC User’s Guide

ODBC_FETCH Function
Initiates a fetch (cursor) operation to retrieve a specified number of rows.

Usage

table = ODBC_FETCH(stmt_handle, option [, start_row])

Input Parameters

stmt_handle — The statement handle returned from ODBC_PREPARE.

option — An integer representing one of the following fetching options:

start_row — Only valid for fetch next or fetch previous options, this is the starting
row for the cursor. If not specified, the fetch will go from the current position of the
cursor.

Returned Value

table — Either receives a PV-WAVE table containing the results, or a count of the
affected rows, or –1 for failure.

Discussion

ODBC_FETCH is used to import into a PV-WAVE table part of a DBMS server
result set which was created by a call to ODBC_PREPARE. While ODBC_SQL
is used to return an entire result set, ODBC_PREPARE and ODBC_FETCH allow

1 Fetch next — Fetch the next cursor set from the specified starting
row or else the current position.

2 Fetch previous — Fetch the previous result set from the specified
starting row or else the current position.

3 Fetch first — Fetch the first cursor set.

4 Fetch last — Fetch the last cursor set.

5 Next result set — If the statement produced more than one result
set (a batched command or a stored procedure) go to the next
result set.

6 Close — Close the statement and free its resources.

ODBC_FETCH Function 27

you to control the rate at which data is imported. Each call to ODBC_FETCH
returns at most the number of rows specified by the cursor size that was determined
by the call to ODBC_PREPARE.

Examples
orders_select = ODBC_PREPARE(dbase_orders, $

’SELECT * FROM[orders];’, 15)

orders = ODBC_FETCH(orders_select, 3)

orders contains rows 1-15; current position is row 16.

orders = ODBC_FETCH(orders_select, 1)

orders contains rows 16-30; current position is row 31.

orders = ODBC_FETCH(orders_select, 2)

orders contains rows 1-15; current position is row 16.

orders = ODBC_FETCH(orders_select, 1, 40)

orders contains rows 40-54; current position is row 55.

orders = ODBC_FETCH(orders_select, 2, 20)

orders contains rows 6-20; current position is row 21.

orders = ODBC_FETCH(orders_select, 4)

orders contains last rows; current position is past EOF.

orders = ODBC_FETCH(orders_select, 1)

orders is -1; current position is past EOF.

orders = ODBC_FETCH(orders_select, 6)

orders is 0.

See Also

ODBC_PREPARE

28 Chapter 2: Reference PV-WAVE:ODBC User’s Guide

ODBC_INIT Function
Initiates an ODBC session.

Usage

env_handle = ODBC_INIT()

Input Parameters

None.

Returned Value

env_handle — An ODBC environment handle, as returned by ODBC_INIT.

Example
env_handle = ODBC_INIT()

This is the first call required to initialize an ODBC session.

See Also

ODBC_EXIT

ODBC_LEVEL Function 29

ODBC_LEVEL Function
Tests for ODBC level compliance for specific drivers (related to fetch operations
only).

Usage

level = ODBC_LEVEL(connect_handle)

Input Parameters

connect_handle — The handle returned by ODBC_CONNECT.

Returned Value

level — The level of compliance for fetch operations:

1 Indicates level 1; extended fetch operations are not possible (no
cursor operations).

2 Indicates cursor operations are supported.

30 Chapter 2: Reference PV-WAVE:ODBC User’s Guide

ODBC_META Function
Searches for data source objects.

Usage

table = ODBC_META(connect_handle, option [, qualifier [, owner [, table_name
[, col_name | table_type]]]])

Input Parameters

connect_handle — The handle returned by ODBC_CONNECT.

option -- An integer specifying the information to retrieve, as follows:

qualifier — A string describing a subset of the data on the server. This could be a
database, a schema, or something else, depending upon the DBMS. If this param-
eter is missing or a null string ('') is specified, the query returns information on all
objects in the current domain. Support of SQL wildcards in this field is implemen-
tation dependent.

owner — A string describing the owner of the data on the server. If specified, only
the objects or columns belonging to owners that match this parameter will be
returned. If this parameter is missing or a null string ('') is specified, the query
returns information on all owners. SQL wildcards (such as '%') are supported in
this field.

table_name — A string describing an object name on the server. In most cases, this
will be a the name of a table object, but for some DBMS, it could also be a view or
a query. If specified, only the object names that match this parameter will be
returned. If this parameter is missing or a null string ('') is specified, the query
returns information on all objects. SQL wildcards (such as '%') are supported in
this field.

1 Get the objects (tables, views, queries, etc.) in the data
source.

2 Get the columns for one or more objects.

3 Get the permission information on the objects in the data
source.

4 Get permission information on the columns of one or more
objects.

ODBC_META Function 31

col_name or table_type — A string describing a column name or table type. For
option 1, this parameter represents the table type (TABLE, VIEW, and so on.). For
options 2 and 4, this parameter represents the column name. For option 3, this
parameter is ignored. If this parameter is specified, only the object information that
matches this parameter will be returned. If this parameter is missing or a null string
('') is specified, the query returns information on all appropriate objects. SQL wild-
cards (such as '%') are supported in this field.

Returned Value

table — A PV-WAVE table containing meta-information for each object. If the
function fails, –1 is returned.

Discussion

Not all drivers support all of the meta-information types. Not all drivers support
searching on all of the string parameters; submit such parameters as empty strings.

Examples
table_info = ODBC_META(oracle_id, 1)

Returns a PV-WAVE table of information on all objects (tables) in the data source.

table_info = ODBC_META(oracle_id, 2)

Returns a PV-WAVE table of information on all columns of all objects (tables) in the data
source.

table_info = ODBC_META(oracle_id, 1, '', '', 'T%')

Returns a PV-WAVE table of information on all objects (tables) in the data source with
names that begin with T. If no such objects exist, a value of 0L is returned.

table_info = ODBC_META(oracle_id, 3)

Returns a PV-WAVE table of information on the privileges associated with all objects
(tables) in the data source.

table_info = ODBC_META(oracle_id, 4, '', 'Bob', 'Recordings')

Returns a PV-WAVE table of information on the privileges associated with all columns
in the table Recordings, owned by user Bob. If no such objects exist, a value of 0L is
returned.

32 Chapter 2: Reference PV-WAVE:ODBC User’s Guide

ODBC_PREPARE Function
Sets up a cursor for use with ODBC_FETCH.

Usage

stmt = ODBC_PREPARE(connect_handle, sql_command, cursor_size)

Input Parameters

connect_handle — The handle returned by ODBC_CONNECT.

sql_command — A string containing SQL statement(s) to execute on a data
source.

cursor_size — An integer specifying the number of rows to fetch for each call to
ODBC_FETCH. If this parameter is missing, cursor_size defaults to the value
specified by the system variable !Odbc_Rowset_Size.

Returned Value

stmt — The ID for the SQL statement. This ID is used as input to the function
ODBC_FETCH.

Discussion

ODBC_PREPARE is used to prepare the result set on the DBMS server, so that it
can be imported into a PV-WAVE table with ODBC_FETCH.

While ODBC_SQL is used to return an entire result set, ODBC_PREPARE and
ODBC_FETCH allow you to control the rate at which data is imported. Each call
to ODBC_FETCH will return at most the number of rows specified by the cursor
size.

Although the default cursor size is the same as the value in the system variable
!Odbc_Rowset_Size, specifying the cursor size as a parameter does not change the
value of !Odbc_Rowset_Size. For more information on changing the rowset size,
see Controlling the Rowset Size on page 15.

Once a result set has been created with ODBC_PREPARE, the cursor size cannot
be changed until another call is made to ODBC_PREPARE, which creates a new
result set.

ODBC_ROLLBACK Procedure 33

Example
orders_select = ODBC_PREPARE(dbase_orders, $

’SELECT * FROM [orders];’, 15)

See Also

ODBC_FETCH

ODBC_ROLLBACK Procedure
Cancels changes for an ODBC transaction.

Usage

ODBC_ROLLBACK, connect_handle

Input parameters

connect_handle — A connection handle established with ODBC_CONNECT.

Keywords

Env_handle — If set, this keyword indicates that the input parameter is an envi-
ronment handle (established with ODBC_INIT). In this case, all transactions on all
connections associated with this environment handle are affected.

Discussion

ODBC transactions such as UPDATE, INSERT, and DELETE can cause changes
in the data on the server. Often, a user will want to review these changes and decide
whether to save or cancel them. ODBC_ROLLBACK cancels all the changes
which are pending on the current connection. To save the changes, use the
ODBC_COMMIT procedure.

Currently, PV-WAVE: ODBC Connection does not support savepoints or nested
transactions.

34 Chapter 2: Reference PV-WAVE:ODBC User’s Guide

NOTE Certain DBMS may allow COMMITs to occur via the ODBC_SQL
command, but these are not recommended in ODBC. For best results, please use
ODBC_COMMIT and ODBC_ROLLBACK.

Example
ODBC_ROLLBACK, connect_handle

See Also

ODBC_COMMIT

ODBC_SQL Function
Initiate an SQL command.

Usage

table = ODBC_SQL(connect_handle, sql_stmt)

Input Parameters

connect_handle — The handle returned by ODBC_CONNECT.

sql_stmt — A string containing an SQL statement to execute on the data source.

Returned Value

table — A PV-WAVE table containing the result of the SQL commands, table data,
or other data source response data. If the function fails or if no data is available,
–1 is returned.

Keywords

Null_Info — Returns an associative array containing information on nulls in the
database query result.

ODBC_SQL Function 35

Discussion

For detailed information on working with tables in PV-WAVE, see the PV-WAVE
User’s Guide.

Example 1

This example imports all of the data from the emp table.

emp = ODBC_SQL(oracle_id, ’SELECT * from emp’)

Example 2

This example imports the name, job, and salary of the managers whose salary is
greater than $2800.

emp = ODBC_SQL(oracle_id, "SELECT ename, job," +$
"sal from emp where job = ’MANAGER’ and " + "SAL > 2800")

Example 3

This example imports the names and salaries of employees whose salary is between
$1200 and $1400.

emp = ODBC_SQL(oracle_id, ’SELECT ename, sal’+$
’from emp where sal between 1200 and 1400’)

Example 4

This example imports the names of employees and their commissions whenever the
commission is not a NULL value.

table = ODBC_SQL(oracle_id, ’SELECT ename’ +$
’from emp where comm is not NULL’)

Example 5

This example uses the Null_Info keyword.

Table=odbc_sql(hcon,'select * from blanktest',null_info=foo)

This returns the result ‘table’ from your query and the null info object associative
array ‘foo’. Foo contains three elements:

• N_ROWS = the number of rows returned in the query

• N_COLS = the number of columns or fields returned

36 Chapter 2: Reference PV-WAVE:ODBC User’s Guide

• MISSING_DATA = the null info object associative array

The MISSING_DATA associative array contains the field name tags, each of which
has the associated array listing the rows with missing data for the tag.

For more information on the null info object and to process and extract the null
information array use the NULL_PROCESSOR function.

See Also

NULL_PROCESSOR, ODBC_CONNECT, ODBC_DISCONNECT

See the following related functions in the PV-WAVE Reference:

BUILD_TABLE, GROUP_BY, ORDER_BY, QUERY_TABLE, UNIQUE

	PV-WAVE ODBC User's Guide
	Table of Contents
	Preface
	Intended Audience
	Conventions Used in this Manual
	Technical Support
	FAX and E-mail Inquiries
	Electronic Services

	1 - Getting Started
	Introduction
	Starting PV-WAVE ODBC Connection
	PV-WAVE:ODBC Connection Capabilities
	Data Source Access is Convenient
	Use the SQL Syntax You Already Know
	Cursor Operations are Supported
	Multiple ODBC Connections are Supported
	Handling Data Inside PV-WAVE

	Supported Data Source Drivers
	Connecting to a Data Source
	Making a Connection to the Data Source
	Disconnecting from the Data Source
	Querying the Data Source
	Example 1: Importing an Entire Table
	Example 2: Importing and Sorting Part of a Table
	Example 3: Importing and Sorting Table Summary Data
	Example 4: Importing Data from Multiple Tables
	Example 5: Importing NULL Values

	Controlling the Rowset Size

	2 - Reference
	Summary of ODBC Connection Routines
	NULL_PROCESSOR Function
	Usage
	Input Parameters
	Keywords
	Discussion

	ODBC_COMMIT Procedure
	Usage
	Input Parameters
	Keywords
	Discussion
	Example
	See Also

	ODBC_CONNECT Function
	Usage
	Input Parameters
	Returned Value
	Discussion
	Example 1
	Example 2
	See Also

	ODBC_DISCONNECT Procedure
	Usage
	Input Parameters
	Discussion
	Example
	See Also

	ODBC_EXIT Procedure
	Usage
	Input Parameters
	Discussion
	Example
	See Also

	ODBC_FETCH Function
	Usage
	Input Parameters
	Returned Value
	Discussion
	Examples
	See Also

	ODBC_INIT Function
	Usage
	Input Parameters
	Returned Value
	Example
	See Also

	ODBC_LEVEL Function
	Usage
	Input Parameters
	Returned Value

	ODBC_META Function
	Usage
	Input Parameters
	Returned Value
	Discussion
	Examples

	ODBC_PREPARE Function
	Usage
	Input Parameters
	Returned Value
	Discussion
	Example
	See Also

	ODBC_ROLLBACK Procedure
	Usage
	Input parameters
	Keywords
	Discussion
	Example
	See Also

	ODBC_SQL Function
	Usage
	Input Parameters
	Returned Value
	Keywords
	Discussion
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	See Also

